Type transition of simple random walks on randomly directed regular lattices1
نویسندگان
چکیده
Simple random walks on a partially directed version of Z2 are considered. More precisely, vertical edges between neighbouring vertices of Z2 can be traversed in both directions (they are undirected) while horizontal edges are one-way. The horizontal orientation is prescribed by a random perturbation of a periodic function, the perturbation probability decays according to a power law in the absolute value of the ordinate. We study the type of the simple random walk, i.e. its being recurrent or transient, and show that there exists a critical value of the decay power, above which the walk is almost surely recurrent and below which is almost surely transient. Supported in part by the Actions Internationales programme of the Université de Rennes 1. 1991 Mathematics Subject Classification: 60J10, 60K20
منابع مشابه
Type Transition of Simple Random Walks on Randomly Directed Regular Lattices
Simple random walks on a partially directed version of Z are considered. More precisely, vertical edges between neighbouring vertices of Z can be traversed in both directions (they are undirected) while horizontal edges are one-way. The horizontal orientation is prescribed by a random perturbation of a periodic function, the perturbation probability decays according to a power law in the absolu...
متن کاملNon-Backtracking Random Walks and a Weighted Ihara’s Theorem
We study the mixing rate of non-backtracking random walks on graphs by looking at non-backtracking walks as walks on the directed edges of a graph. A result known as Ihara’s Theorem relates the adjacency matrix of a graph to a matrix related to non-backtracking walks on the directed edges. We prove a weighted version of Ihara’s Theorem which relates the transition probability matrix of a non-ba...
متن کاملCoalescent Random Walks on Graphs
Inspired by coalescent theory in biology, we introduce a stochastic model called ”multi-person simple random walks” or “coalescent random walks” on a graph G. There are any finite number of persons distributed randomly at the vertices of G. In each step of this discrete time Markov chain, we randomly pick up a person and move it to a random adjacent vertex. To study this model, we introduce the...
متن کاملN ov 2 00 1 Random walks on randomly oriented lattices 1
Simple random walks on various types of partially horizontally oriented regular lattices are considered. The horizontal orientations of the lattices can be of various types (deterministic or random) and depending on the nature of the orientation the asymptotic behaviour of the random walk is shown to be recurrent or transient. In particular, for randomly horizontally oriented lattices the rando...
متن کاملh . PR ] 1 5 Ja n 20 02 On the physical relevance of random walks : an example of random walks on a randomly oriented lattice ∗
Random walks on general graphs play an important role in the understanding of the general theory of stochastic processes. Beyond their fundamental interest in probability theory, they arise also as simple models of physical systems. A brief survey of the physical relevance of the notion of random walk on both undirected and directed graphs is given followed by the exposition of some recent resu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012